Using Numpy to make a calculator
The given code is a Python function named calculate that takes a list as input. It uses the NumPy library, imported as np, to perform various calculations on the input list. Here is a breakdown of what the code does:
It converts the input list into a 3x3 NumPy array using np.array(list).reshape(3, 3).
It calculates the mean, variance, standard deviation, maximum, minimum, and sum of the values in the array.
The calculated values are stored in separate lists, each representing the mean, variance, standard deviation, maximum, minimum, and sum for different dimensions (rows, columns, and overall).
The calculated lists are then stored as values in a dictionary named result.
Finally, the dictionary result is returned as the output of the function.
The purpose of this code is to provide a convenient way to calculate various statistical measures for a 3x3 array. The function takes a list of values, converts it into a 3x3 array, and computes statistics such as mean, variance, standard deviation, maximum, minimum, and sum for different dimensions. The results are returned in the form of a dictionary.
import numpy as np
def calculate(list):
# Convert the input list to a 3x3 numpy array
arr = np.array(list).reshape(3, 3)
# Calculate the mean, variance, standard deviation, max, min, and sum
mean = [np.mean(arr, axis=0).tolist(), np.mean(arr, axis=1).tolist(), np.mean(arr).tolist()]
variance = [np.var(arr, axis=0).tolist(), np.var(arr, axis=1).tolist(), np.var(arr).tolist()]
std_dev = [np.std(arr, axis=0).tolist(), np.std(arr, axis=1).tolist(), np.std(arr).tolist()]
maximum = [np.max(arr, axis=0).tolist(), np.max(arr, axis=1).tolist(), np.max(arr).tolist()]
minimum = [np.min(arr, axis=0).tolist(), np.min(arr, axis=1).tolist(), np.min(arr).tolist()]
sum_values = [np.sum(arr, axis=0).tolist(), np.sum(arr, axis=1).tolist(), np.sum(arr).tolist()]
# Create and return the dictionary
result = {
'mean': mean,
'variance': variance,
'standard deviation': std_dev,
'max': maximum,
'min': minimum,
'sum': sum_values
}
return result